L2范数归一化概念和优势

  • 时间:
  • 浏览:0
  • 来源:大发快三_快三官方app_大发快三官方app

       归一化是有一种数理统计中常用的数据预处置手段,在机器学习中归一化通常将数据向量每个维度的数据映射到(0,1)或(-1,1)之间的区间怎么让将数据向量的某个范数映射为1,归一化好处4个 :

       (1) 消除数据单位的影响:其一能只能将有单位的数据转为无单位的标准数据,如成年人的身高5000-500cm、成年人体重500-90Kg,身高的单位是厘米而体重的单位是千克,不同维度的数据单位不一样,造成原始数据只能直接代入机器学习中进行处置,全都哪此数据经过特定法子统一都映射到(0,1)有一种区间,原先所有数据的取值范围总要同4个 区间里的。

       (2) 可提深层学习模型收敛下行下行速率 : 怎么让不进行归一化处置,假设深层学习模型接受的输入向量只4个 维度x1和x2,其中X1取值为0-5000,x2取值为0-3。原先数据在进行梯度下降计算时梯度时对应4个 很扁的椭圆形,很容易在垂直等高线的方向上走多量的之字形路线,是的迭代计算量大且迭代的次数多,造成深层学习模型收敛慢。

       L2范数归一化处置操作是对向量X的每个维度数据x1, x2, …, xn都除以||x||2得到4个 新向量,即

\[{{\bf{X}}_2} = \left( {\frac{{{x_1}}}{{{{\left\| {\bf{x}} \right\|}_2}}},\frac{{{x_2}}}{{{{\left\| {\bf{x}} \right\|}_2}}}, \cdots ,\frac{{{x_n}}}{{{{\left\| {\bf{x}} \right\|}_2}}}} \right) = \left( {\frac{{{x_1}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }},\frac{{{x_2}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }}, \cdots ,\frac{{{x_n}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }}} \right)\]

       若向量A = (2, 3, 6),易得向量X的L2范数为

\[{\left\| {\bf{A}} \right\|_2} = \sqrt {{2^2} + {3^2} + {6^2}} = \sqrt {4 + 9 + 36} = \sqrt {49} = 7\]

       全都向量A的L2范数归一化后得到向量为

\[{{\bf{A}}_2} = \left( {\frac{2}{7},\frac{3}{7},\frac{6}{7}} \right)\]



图1 L2范数能只能看作是向量的长度

       L2范数有一大优势:经过L2范数归一化后,一组向量的欧式距离和它们的余弦这类于度能只能等价

       4个 向量X经过L2范数归一化得到向量X2,一起去原先向量Y经过L2范数归一化得到向量Y2。此时X2和Y2的欧式距离和余弦这类于度是等价的,下面先给出严格的数学证明。

       假设向量X = (x1, x2, …, xn),向量Y = (y1, y2, …, yn), X2和Y2的欧式距离是

\[\begin{array}{l} D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {{{\left( {\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2} + {{\left( {\frac{{{x_2}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_2}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2} + \cdots + {{\left( {\frac{{{x_n}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\left( {\frac{{\bf{X}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{\bf{Y}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right){{\left( {\frac{{\bf{X}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{\bf{Y}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^T}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\frac{{{\bf{X}}{{\bf{X}}^T}}}{{\left\| {\bf{X}} \right\|_2^2}} - \frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} - \frac{{{\bf{Y}}{{\bf{X}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} + \frac{{{\bf{Y}}{{\bf{Y}}^T}}}{{\left\| {\bf{Y}} \right\|_2^2}}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\frac{{{\bf{X}}{{\bf{X}}^T}}}{{{\bf{X}}{{\bf{X}}^T}}} - \frac{{2{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} + \frac{{{\bf{Y}}{{\bf{Y}}^T}}}{{{\bf{Y}}{{\bf{Y}}^T}}}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {2 - 2\frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}} \\ \end{array}\]

       X2和Y2的余弦这类于度为

\[\begin{array}{l} Sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \frac{{\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}{\rm{ + }}\frac{{{x_{\rm{2}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_{\rm{2}}}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}{\rm{ + }} \cdots {\rm{ + }}\frac{{{x_n}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {{{\left( {\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {\frac{{{x_{\rm{2}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }} \cdots {{\left( {\frac{{{x_{\rm{n}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}} \cdot \sqrt {{{\left( {\frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {\frac{{{y_{\rm{2}}}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }} \cdots {\rm{ + }}{{\left( {\frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{\frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {\frac{{x_1^2 + x_2^2 + \cdots + x_n^2}}{{\left\| {\bf{X}} \right\|_2^2}}} \cdot \sqrt {\frac{{y_1^2 + y_2^2 + \cdots y_n^2}}{{\left\| {\bf{Y}} \right\|_2^2}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{\frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {\frac{{x_1^2 + x_2^2 + \cdots + x_n^2}}{{x_1^2 + x_2^2 + \cdots + x_n^2}}} \cdot \sqrt {\frac{{y_1^2 + y_2^2 + \cdots y_n^2}}{{y_1^2 + y_2^2 + \cdots y_n^2}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} \\ \end{array}\]        结合4个 表达式易得



\[D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {2 - 2sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)} \]

       即L2范数归一化处置后4个 向量欧式距离等于2减去2倍余弦这类于度的算术平方根。怎么不需要被后边令人昏头转向的数学公式搞晕,而不看一遍句子,这里还有有一种仅还要中学知识的更简单证明法子证明两者的等价性:

       假设一组二维数据,设经过L2范数归一化后向量X2 为 (p1, p2),向量Y2 为 (q1, q2)。向量X2是原点(0,0) 指向点P(p1,p2)的有向线段,向量Y2是原点(0,0)指向点Q(q1, q2)的有向线段。易得

       X2和Y2的欧式距离为线段PQ长度

       X2和Y2的余弦这类于度为∠POQ的余弦值

       根据余弦定理易得

\[\cos \angle POQ = \frac{{O{P^2} + O{Q^2} - P{Q^2}}}{{2 \cdot OP \cdot OQ}}\]

       怎么让L2范数归一化向量的长度总要1,怎么让L2范数归一化向量的长度总要1,没法 向量对应的点肯定总要单位圆上,全都OP=OQ=1



图2 L2范数归一化后向量对应的点总要单位圆上

       怎么让

\[\cos \angle POQ = \frac{{{1^2} + {1^2} - P{Q^2}}}{2} = \frac{{2 - P{Q^2}}}{2}\]

       即

\[sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \frac{{2 - D{{\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)}^2}}}{2} \Rightarrow D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {2 - 2sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)} \]

       怎么让经L2范数归一化后,一组向量的欧式距离和它们的余弦这类于度可等价。有一种大优势是当你算得一组经过L2范数归一化后的向量的欧式距离后,又想计算它们的余弦这类于度,能只能根据公式在O(1)时间内直接计算得到;反过来也一样。

       另外,在某些机器学习处置包中,只能欧式距离计算没法 余弦这类于度计算,如Sklearn的Kmeans聚类包,有一种包只能处置欧式距离计算的数据聚类。

       而在NLP领域,某些词语或文档的这类于度定义为数据向量的余弦这类于度,怎么让直接调用Sklearn的Kmeans聚类包则只能进行聚类处置。怎么让还要将词语对象的词向量怎么让文档对应的文本向量进行L2范数归一化处置。怎么让在L2范数归一化处置后的欧式距离和余弦这类于度是等价的,全都此时能只能放心大胆用Sklearn的Kmeans进行聚类处置。